EN

资源

RESOURCES

光谱仪选择

● 光栅定义

光栅作为重要的分光器件,它的选择与性能直接影响整个系统性能。

光栅分为刻划光栅、复制光栅、全息光栅等。刻划光栅是用钻石刻刀在涂薄金属表面机械刻划而成;复制光栅是用母光栅复制而成。典型刻划光栅和复制光栅的刻槽是三角形。全息光栅是由激光干涉条纹光刻而成。全息光栅通常包括正弦刻槽。刻划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可作到高光谱分辨率。

● 选配光栅

选择光栅主要考虑如下因素:

1、光栅刻线,光栅刻线多少直接关系到光谱分辨率,刻线多光谱分辨率高,刻线少光谱覆盖范围宽,两者要根据实验灵活选择;

2、闪耀波长,闪耀波长为光栅*大衍射效率点,因此选择光栅时应尽量选择闪耀波长在实验需要波长附近。如实验为可见光范围,可选择闪耀波长为500nm ;

3、使用范围,光栅的使用的下限通常可认为是光栅闪耀波长的一半,上限可认为是光栅闪耀波长的二倍,实际可参考光栅效率曲线图;

4、光栅效率,光栅效率是衍射到给定级次的单色光与入射单色光的比值。光栅效率愈高,信号损失愈小。为提高此效率, 除提高光栅制作工艺外,还采用特殊镀膜,提高反射效率。
 

光栅方程

反射式衍射光栅是在衬底上周期地刻划很多微细的刻槽, 一系列平行刻槽的间隔与波长相当,光栅表面涂上一层高反射率金属膜。光栅沟槽表面反射的辐射相互作用产生衍射和干涉。对某波长,在大多数方向消失,只在一定的有限方向出现, 这些方向确定了衍射级次。如图所示,光栅刻槽垂直辐射入射平面,辐射与光栅法线入射角为α,衍射角为β,衍射级次为m,d 为刻槽间距,在下述条件下得到干涉的极大值:mλ=d (sinα+sinβ)。

定义φ 为入射光线与衍射光线夹角的一半,即φ=(α-β)/2 ; θ 为相对于零级光谱位置的光栅角,即θ=(α+β)/2, 得到更方便的光栅方程:

mλ=2dcosφsinθ

从该光栅方程可看出:

对一给定方向β,可以有几个波长与级次m 相对应λ 满足光栅方程。比如600nm 的一级辐射和300nm 的二级辐射、200nm 的三级辐射有相同的衍射角,这就是为什么要加消二级光谱滤光片轮的意义。

● 单色仪重要参数

分辨率

光栅单色仪的分辨率R 是分开两条临近谱线能力的度量, 根据罗兰判据为:

R=λ/Δλ

光栅光谱仪中有实际意义的定义是测量单个谱线的半高宽(FWHM)。实际上,分辨率依赖于光栅的分辨本领、系统的有效焦长、设定的狭缝宽度、系统的光学像差以及其它参数。

R ∝ M · F/W

M- 光栅线数 F- 谱仪焦距 W- 狭缝宽度

色散

光栅光谱仪的色散决定其分开波长的能力。光谱仪的倒线色散可计算得到:沿单色仪的焦平面改变距离χ 引起波长λ 的变化,即:

Δλ/Δχ=dcosβ/mF

这里d、β、F 分别是光栅刻槽的间距、衍射角和系统的有效焦距,m 为衍射级次。由方程可见,倒线色散不是常数, 它随波长变化。在所用波长范围内,变化可能超过2 倍。根据国家标准,在本样本中,用1200l/mm 光栅色散的中间值(典型的为435.8nm)时的倒线色散。

带宽

带宽是忽略光学像差、衍射、扫描方法、探测器像素宽度、狭缝高度和照明均匀性等,在给定波长,从光谱仪输出的波长宽度。它是倒线色散和狭缝宽度的乘积。例如,单色仪狭缝为0.2mm,光栅倒线色散为2.7nm/mm,则带宽为2.7×0.2=0.54nm。

波长精度、重复性和准确度

波长精度是光谱仪确定波长的刻度等级,单位为nm。通常, 波长精度随波长变化。

波长重复性是光谱仪返回原波长的能力。这体现了波长驱动机械和整个仪器的稳定性。

波长准确度是光谱仪设定波长与实际波长的差值。卓立汉光的每台单色仪都要在多个波长点检查波长准确度。

F/#

F/# 定义为焦距(f) 与光谱仪内有效光学元件*小通光孔径(D) 的比值。光通过效率与F/# 的平方成反比,F/# 愈小,光通过率愈高。