APPLICATION
在半导体制造过程中,前期的全自动晶圆缺陷检测技术非常重要。因为在后端的生产流程中,通常会有多片晶圆粘合到一起,或者把晶圆粘合到不透明的材料上。因为半导体材料对可见光都是不透明的,所以很难用可见图像技术对粘合效果做表征或者检测粘合表面的污染。近红外检测技术是在半导体工业的质量监控一项有前途的新技术。本文重点介绍近红外成像检测技术在MEMS工业生产中发挥的重要性!
从上世纪90年代初开始,世界范围内掀起了研究高亮度LED的热潮,以它为基础的固体照明正在迅猛发展。因为高亮度LED采用双异质结构,要求材料具有良好的晶格匹配,这个要求对用于异质结LED的材料体系提出了严格的限制。 Ⅲ-Ⅴ族氮化物半导体材料,拥有优良的光电性质,化学性质非常稳定,可在⾼高温、酸碱、辐射环境下使⽤用,并且禁带宽度大,因此在大功率的电子器件方面颇具吸引力,已引起了国内外众多研究者的兴趣。人们感兴趣的Ⅲ-Ⅴ族氮化物是AIN、GaN、InN及其合金,通过控制它们各自的组份,其禁带宽度可从InN的0.7eV到GaN的3.4eV直到AlN的6.2eV连续变化,覆盖了整个可见光区,并扩展到紫外范围,适合制备高亮度LED。
氧化亚铜为一价铜的氧化物,是鲜红色粉末状固体,几乎不溶于水,在酸性溶液中化为二价铜。它是一种重要的P型半导体材料,禁带宽度仅为2.1eV,光电转换效率可达到18%。1998年氧化亚铜被发现可作为催化剂在阳光下将水分解成氢气和氧气,证明是一种极具前景的光催化氧化材料。现今,随着纳米材料的发展,不仅已经制备各种尺寸及形貌的氧化亚铜微纳米结构,还提出了多种形貌控制理论,如量子点、纳米线、纳米片、纳米球、多面体、空心结构等。纳米级的Cu2O还具有独特的光学和磁学性质,在光电转换、工业催化和气体传感器等方面也得到了广泛的应用。
随着吸烟人口的不断增长,与香烟有关的各类物证出现在刑事案件现场的比例逐步提高,进行香烟品牌和来源的分析,对锁定侦查范围、有效打击犯罪变得尤为重要,现阶段已经对香烟烟蒂、烟灰、烟丝、香烟盒外包装薄膜、烟用内衬纸等进行了多项研究并取得了一定的成果。香烟盒外包装薄膜即卷烟小盒及条盒外包裹的一层薄膜,全世界有85%以上的烟盒采用透明包装材料进行包装。因其具有阻隔性、透明性、热封性、机械加工性、透氧透湿率小等特性,能有效防止香烟吸潮霉变,阻止烟草香气外逸,具有良好的阻隔性和保香性。[1]
随着社会与经济的发展,环境污染越来越成为困绕着人类健康和制约社会继续发展的严峻问题,多环芳烃类污染物,在环境中具有长期稳定性、可迁徙性以及生物富集性,能干扰生物内分泌系统,损坏生物的神经系统,潜在的致癌作用[1-3]。表面增强拉曼光谱(Surface enhanced Raman spectroscopy, SERS)作为一种强有力的原位分析技术,不仅可以像拉曼光谱一样能够提供分子结构的特征光谱,而且还可以极大地增强被测分子的拉曼信号,通常可以增强6个数量级以上,有时甚至可以达到14个数量级,从而达到单分子检测。文献研究表明表面增强拉曼光谱完全可以实现对特定环境污染物的高灵敏度定性和定量检测。过去受限于拉曼光谱仪的发展,表面增强拉曼光谱基本上只能作为一种实验室技术。随着激光器技术、光纤技术以及CCD检测技术的发展,拉曼光谱仪可以集成为一个小型、快速、简便的检测设备,进而使拉曼光谱仪应用于多环芳烃快速分析领域成为可能[4-11]。